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I Do Not Think It Means What You 
Think It Means: Artificial Intelligence, 

Cognitive Work & Scale

Kevin Scott

Over the past decade, AI technologies have advanced by leaps and bounds. Progress 
has been so fast, voluminous, and varied that it can be a challenge even for experts 
to make sense of it all. In this essay, I propose a framework for thinking about AI 
systems, specifically the idea that they are ultimately tools developed by humans to 
help other humans perform an increasing breadth of their cognitive work. Our AI 
systems for assisting us with our cognitive work have become more capable and gen-
eral over the past few years. This is in part due to a confluence of novel AI algorithms 
and the availability of massive amounts of data and compute. From this, research-
ers and engineers have been able to construct large, general models that serve as 
flexible and powerful building blocks that can be composed with other software to 
drive breakthroughs in the natural and physical sciences, to solve hard optimization 
and strategy problems, to perform perception tasks, and even to assist with complex 
cognitive tasks like coding. 

W hen I say the word “work,” what do I mean? In the mornings, when I 
tell my children that “I’m going to work,” they understand that I am 
about to get into a car, drive to my office, and, for the rest of the day, 

do a set of things alongside my coworkers for an employer who pays my salary. 
When I tell my wife that “I’m going to work in the shop for a while,” she under-
stands that I am headed to my workshop where I will use a variety of tools that 
I hold dear to tinker around on personal projects. When I say that “I’m going to 
work in the garden” or “I’m going to work on this essay,” the people to whom I 
am speaking almost always understand what I mean. Work in all these contexts 
means me, a human being, applying effort to achieve some effect. In these con-
texts, we all have some shared understanding of what the applied efforts entail, 
and why the effects are worth achieving.

In the late eighteenth century, accelerating into the nineteenth and twentieth 
centuries, individual members of society had cause to think about work in new 
ways. As society industrialized and humans devised new ways to use machines to 
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do work, nearly every aspect of human life changed. As these machines became 
increasingly complex, and as we began to use them to perform types of work that 
had previously been performed through a combination of human labor and less 
powerful tools, we needed new language and new scientific, technical, and social 
shared understandings for these new forms of machine-assisted work. 

Driven by the intellectual and industrial revolutions of the period, by the last 
half of the nineteenth century, scientists like Nicolas Léonard Sadi Carnot, James 
Prescott Joule, Rudolf Clausius, Lord Kelvin, James Maxwell, Ludwig Boltzmann, 
and others had given us a simple but powerful definition of work–weight lifted 
through a height–and a rich scientific theory–thermodynamics–that helped us 
better understand not just the natural world, but how to better engineer, build, 
and direct the new forms of machine work shaping society. That nineteenth- 
century scientific definition of work is very much relevant today, but it is charac-
teristic of its time. The work that it defines is physical. Understanding the nature 
of physical work was and is necessary to understand the machinery of the uni-
verse and was essential in constructing an industrial society.

When I get in my car, drive to my office, and do things alongside my cowork-
ers, “weight lifted through a height” is perhaps not the most relevant definition of 
the work that I, and many others, do every day. I meet with people. I listen. I coach 
and mentor. I attempt to make a very small number of meaningful decisions. I 
read and digest information. I think. I imagine. I code. I write. With all these ef-
forts, the effects that I am trying to achieve are the solutions of problems. For me 
those might be: Can we use our AI supercomputers to make molecular dynamics 
simulations go much faster so that we can solve a more interesting set of prob-
lems in biology? How can we make sure that our next machine learning model 
does not produce adverse effects? Can we work around firmware issues to pre-
vent a compute shortage in our AI training clusters? Can I understand enough of 
what a coworker is trying to achieve to meaningfully assist them? The interest-
ing thing about all these problems and their solutions is that the work required to 
solve them is almost entirely cognitive.

I f you are reading this essay, I would wager that you earn some or all of your 
living doing cognitive work. Perhaps, if you made a full accounting of your 
work time, you would discover that, if not most of the effort that you exert in 

your work, then a majority of the effects that you produce are more of the mind 
than the body. I am not arguing that our bodies are mere instruments of the mind. 
And I am certainly not arguing that one form of work is superior to another. I am 
attempting to make a more prosaic assertion: I am a knowledge worker; and you 
may be, too. Moreover, even though we understand the nature of our work well 
enough to do it, and more of us are earning our living this way with each passing 
year, we have not yet crisply defined what cognitive work is nor how to measure 
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it. As AI technologies become more capable, and as we use them to do more things 
that are inarguably cognitive work, this lack of a foundational definition makes it 
increasingly difficult to predict and engineer the changes that machines will bring 
to cognitive work in the coming years. Will AI become yet another instrument or 
tool that we use to express our humanity and creativity, that allows us to better ex-
plore and understand ourselves and the world around us, and that evolves the na-
ture of work once again just as the machines of the industrial revolution have done 
over the past two centuries? Or will AI become something else?

Wikipedia dodges defining what knowledge work is by defining the knowl-
edge worker instead as someone whose main capital is knowledge. The knowl-
edge worker entry then lists examples: “programmers, physicians, pharmacists, 
architects, engineers, scientists, design thinkers, public accountants, lawyers, ed-
itors, and academics, whose job is to ‘think for a living.’”1 Not bad. But not good 
enough to build a theory of cognitive work as useful as thermodynamics was for 
physical work. 

Since the middle of the twentieth century, we have had mathematician Claude 
Shannon’s quantification of information and an information theory with connec-
tions to and, in some respects, directly inspired by classical thermodynamics.2 
Intuitively, it seems safe to say that information is the precursor to knowledge. 
In some sense, building the bridge from the rigor of information theory to a use-
ful theory of cognitive work has been one of the great challenges facing the disci-
pline of AI since its founding in the summer of 1956. You can well imagine that our 
ancestors faced a similar quandary in the eighteenth and nineteenth centuries as 
they architected the industrialization of society. Sometimes the machines came 
before we really understood why they worked and the best way to build them, 
much less the complex network of social implications their construction and use 
entailed. But our ancestors built those machines anyway because it was blindingly 
obvious why they were useful.

In 2022, we have more clues about what a theory of cognitive work might 
be, although the theory itself may not be a new one. Of the ten attendees of the 
1956 Dartmouth Summer Research Conference on Artificial Intelligence, which 
coined the term artificial intelligence and helped to establish AI as a discipline, Ray 
Solomonoff’s name is less well-known than Marvin Minsky, John McCarthy, or 
Claude Shannon. Even though the subdiscipline of AI called machine learning has 
only in the past two decades taken over as the primary thrust of AI research and 
commercial activity, from the beginning, Solomonoff envisioned machine sys-
tems that could use probability and data to learn to solve complex problems. 

Perhaps the most important of Solomonoff’s insights was his theory of induc-
tive inference. This theory is in some ways a resolution of tension between two an-
cient ideas: Occam’s razor and Epicurus’s principle of multiple explanations. We 
are probably all familiar with Occam’s razor, which states that when faced with 
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a choice between multiple consistent explanations of an observed phenomenon, 
we should choose the simplest. Epicurus’s principle, on the other hand, states that 
we should consider all consistent explanations. 

Solomonoff’s resolution, while mathematically quite sophisticated, is a rela-
tively simple idea. You formulate the explanations of observable phenomena as 
programs for an abstract computing device, specifically a universal Turing ma-
chine.3 The shorter a program is, the more concise it is at explaining observed 
phenomena. We can now use this conciseness as a precise measure of simplicity 
for Occam’s razor. We then use the tools of Bayesian probability and a universal 
prior to compute the posterior probability of the range of computable explana-
tions for any observed phenomenon.

When we train modern machine learning models, to be clear, we are not per-
forming Solomonoff induction, which Solomonoff himself proved to be uncom-
putable. Regardless, Solomonoff induction is an interesting framework for think-
ing about cognitive work given that it is complete, at least over the universe of 
computable explanations.4 Although I am biased by my computer science train-
ing, I would argue that it is not hard to imagine how you could explain almost any 
observable phenomenon by at least some arbitrarily long program. The beauty of 
Solomonoff induction is that, to quote Ilya Sutskever, chief scientist of OpenAI, 
“compression equals generalization.” An incomprehensibly long explanation of a 
single phenomenon is nowhere near as powerful as a single concise description of 
many phenomena. Solomonoff induction gives us a framework for thinking very 
precisely about exactly this.

I may have just invoked too little theoretical computer science to frustrate the 
real theoretical computer scientists, and too much to frustrate everyone else, 
with the question still lingering: how does this help us understand cognitive 

work? Let us step back a moment to the work that we all do as knowledge work-
ers. Much of our work involves the use of a bunch of cognitive tools that humans 
have developed over millennia, and frameworks for refining and composing these 
tools with one another that help us solve problems orders and orders of magni-
tude more complex than our ancestors could, even though biologically we are 
most certainly not orders of magnitude smarter. Our ability to refine these cog-
nitive tools, to rigorously ensure that they work, and then to compose them may 
very well be the human version of “compression is generalization,” the way for us 
to do more even though we likely have no more real cognitive capacity than the 
ancients.

Take two of these tools I am guessing that many of us use to do our work: 
mathematics and the scientific method. The modern body of mathematics that 
we learn in high school and university, and increasingly the computational tools 
that we use to support our mathematical activities, lets us reason about phenom-
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ena we can neither see, touch, nor otherwise sense. Perhaps more important, it 
allows us to make predictions and reason about phenomena that have never ac-
tually occurred. With millennia-old mathematics, our ancestors could design aq-
ueducts that supported sophisticated ancient civilizations by allowing them to 
move water around for irrigation, drinking, and sanitation. With twentieth- and 
twenty-first-century mathematics and computation, we can design lithographic 
structures on silicon wafers that move electrons around with near atomic-level 
precision. We carry devices made with these silicon artifacts in our pockets and 
backpacks that give us a way to connect and communicate with billions of oth-
er humans, access the world’s knowledge, create our work, and engage in almost 
any form of commerce imaginable. To get from aqueducts to microprocessors, we 
have had to build a whole modern cognitive architecture composed of layers upon 
layers of cognitive tools that we and our predecessors have contributed to. 

When I stop to think hard about the tools that I use to do my work, they do 
feel like an amazing compression algorithm that lets me get more mileage out of 
the brain I was born with. In computer science, this effect is hard to miss. The 
programs that I wrote as a young computing professional were longer and ac-
complished far less than the ones I write today. And the margin by which a line of 
code has become more powerful is far greater than the productivity I have gained 
through polishing my programming skills over the years. The tools that are avail-
able to me now are orders of magnitude more powerful than they were when I be-
gan coding in the 1980s. Moreover, whether you are an engineer, a scientist, a writ-
er, or an artist, what has become clear over the past handful of years is that the AI 
systems that we are building today will likely have an equally momentous impact 
on the cognitive work that we are all able to do in the future.

I n the same way that an engineer might assemble metal alloys, hydraulic pis-
tons, electric motors, shafts, bearings, and electronics into a machine that 
performs mechanical work, like a forklift, engineers of AI systems increas-

ingly rely upon deep neural networks (DNNs) to build software systems capable 
of performing cognitive work. In a real sense, the widespread use of DNNs today 
is made possible by large amounts of data and compute needed to train them. In 
2009, machine learning scholar Andrew Ng and his colleagues at Stanford pro-
posed the use of graphics processing units (GPUs)–devices capable of quickly 
and efficiently performing the sorts of arithmetic necessary for creating realistic 
video games–for training DNNs.5 While Ng did not invent the DNN, his innova-
tive use of the computational power of GPUs to train them helped to bring about 
a new age of machine learning with the DNN as its most powerful building block.

Over the past decade or so, the amount of compute used to train the DNN 
building blocks of our AI tools for cognitive work has increased exponentially. In 
2018, OpenAI scientists noted that from 2012 to 2018, the amount of compute used 
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in the largest AI training runs had increased by a factor of three hundred thou-
sand.6 Why? In a world of diminishing returns from Moore’s law, it certainly is 
not because compute is cheap. These investments only make sense insofar as scale 
makes DNNs better building blocks for doing cognitive work. And arguably they 
have, in two notable ways.

In the first half of the nineteenth century, mechanical engineer Claude-Louis 
Navier and physicist George Gabriel Stokes developed a set of partial differential 
equations to describe the motion of viscous fluids. The Navier-Stokes flow equa-
tions are, in my opinion, among the most beautiful in all of mathematics. They 
very concisely describe an enormous range of phenomena in hydraulics, aeronau-
tics, oceanography, and atmospheric sciences. They inform everything from the 
design of the pipes carrying water to our homes, to the design of the aircraft that 
take us on holiday, to the weather forecasts we use to plan our days. The problem 
with these equations is that, when used to model extremely complex physical ob-
jects or environments, they can become extraordinarily expensive to solve. Pri-
or to the advent of computers and numerical solvers for partial differential equa-
tions (PDEs), one could only model relatively simple systems with high fidelity, or 
complex systems only with simplifying assumptions to make the calculations fea-
sible. Even now with extremely powerful supercomputers, certain problems that 
could benefit from high-fidelity solutions to Navier-Stokes are computationally 
infeasible.

That is, until recent work by a team of computer scientists at Caltech. Zongyi 
Li and colleagues devised a way to use deep neural networks to solve the Navier- 
Stokes PDEs up to three orders of magnitude faster, under some circumstances, 
than prior state-of-the-art solvers.7 In my graduate research, I was often happy to 
improve the performance of a system by 5 percent. One thousand times more per-
formance is, to torture an overused word, incredible.

The pattern that Li and his colleagues employed is one that is becoming in-
creasingly widespread in the sciences. This is the first notable way in which mod-
els trained with large amounts of compute are becoming better building blocks 
for cognitive work. With an abundance of compute, DNNs can be trained using  
accurate but slow simulators or solvers for numerical, combinatorial, or even 
symbolic problems to encode something about the structure of a problem domain 
that we have yet to be able to model in other ways, such as through mathematics, 
or heuristics, or code. These DNNs can then be used to solve problems, allowing 
scientists to approach their work in new ways. Sometimes these techniques may 
make expensive things quicker or cheaper so that more people can solve more 
problems. Sometimes they may mean creating the ability to tackle problems so 
large or complex that they were previously impossible to solve. And the better 
news is that it seems as if this pattern is widely applicable and just beginning to be 
widely adopted. There is much to look forward to in the years to come.
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The second way that scale is allowing us to construct better building blocks for 
performing cognitive work involves the use of self-supervised learning for build-
ing deep neural networks that behave as building blocks or platforms for a wide 
range of uses.

B efore we dive into an explanation of self-supervised models, it is useful to 
understand a bit about supervised models, which drove much of the prog-
ress in the early years of the DNN boom. The first decade or more of ma-

chine learning systems that I built were all supervised. If you wanted to train a 
model to predict when someone was going to click on an ad, whether a piece of 
email was spam, or whether a picture contains an image of a kitten, you had to 
provide the supervised learning algorithms with lots and lots of examples of both 
good and bad ad clicks, spammy and nonspammy emails, or pictures with or with-
out kittens in them. Providing those examples and counterexamples is an exercise 
called labeling and is time consuming and expensive given the volume of labeled 
training data required to achieve good performance.

For those of us following the field of machine learning closely, the last several 
years have brought extraordinary progress in solving problems related to human 
perception (recognizing the objects in images or the words spoken to a device), 
strategic game playing (beating the best human players at Go or Dota), and, most 
recently, in natural language understanding. The progress in natural language un-
derstanding began to accelerate in 2018 with the publication of a paper by Jacob 
Devlin, a software engineer at Google, which introduced the notion of pretraining 
for language models.8 By now, this will feel like a familiar pattern. BERT, RoBERTa, 
DeBERTa, and other models use a set of techniques to learn the structure of nat-
ural language in a process that researchers in the field call pretraining.9 Pretrain-
ing in these language models, like many of the most powerful contemporary deep 
learning systems, is self-supervised. In other words, the models learn without di-
rect human supervision. 

Once pretrained, a model, with the things it has learned about language struc-
ture, can be used to solve a wide range of problems in natural language processing. 
In many cases, a pretrained model needs to be fine-tuned to a particular task with 
some supervision. In some cases, the pretrained model itself is good enough. For 
instance, researchers at the Allen Institute for Artificial Intelligence used BERT 
in a test-taking system they had built called Aristo that was able to score high-
er than 90 percent on the multiple-choice component of the New York Regents 
eighth-grade science exam, and exceeded 83 percent on the twelfth-grade test.10 
My colleagues at Microsoft Research used their DeBERTa model to, for the first 
time, surpass the human baseline on the SuperGLUE benchmark, which entails 
solving nontrivial natural language problems, such as processing a complicated 
passage of text and then answering true or false questions about the passage, or 
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resolving the referent of a pronoun in an ambiguous passage of text. The best nat-
ural language models are now able to exceed expert human performance on these 
benchmarks.

When examining these systems, it is always important to ask: are these mod-
els capable of doing what they do because they have superhumanly big memories 
from which they recall the answers to problems someone else has solved, or have 
they compressed what they have seen in a way that lets them generalize solutions 
of problems no one has ever solved before? While there is ongoing debate about 
what, if anything, our contemporary self-supervised language models are “learn-
ing,”11 for both those systems as well as those in which the data-fueling model 
learning is generated in simulation, it does seem that large data and compute are 
allowing us to encode useful things about problem domains that no human has 
previously encountered.

Perhaps the two most impressive recent illustrations of how large models 
trained with large compute can produce interesting results are OpenAI’s Gener-
ative Pre-trained Transformer 3 (GPT-3) and Codex models.12 At the time of its 
release, GPT-3 was ten times larger than the largest nonsparse language model. 
There are many benefits to scale, although perhaps the two most important are: 
when properly trained, larger models tend to have better performance on the same 
task than smaller models; and larger models tend to be useful in a broader range of 
tasks, either with fine-tuning or not, than smaller models. Because GPT-3 is useful 
on a broad range of tasks with little or no additional fine-tuning, it has been pos-
sible to offer an application programming interface to developers to allow them 
to probe the utility of the model for the problems they are interested in solving.

One of the biggest surprises of the GPT-3 model is that it generalized something 
about the structure of computer programming languages that allowed it to syn-
thesize code that did not exist in its training data. This realization led to OpenAI  
fine-tuning a model for computer code called Codex, and in collaboration with 
GitHub, developing a coding assistant product called Copilot that can write code 
from natural language prompts. As the Codex model and the Copilot product get 
better, they will not only assist programmers with their cognitive work, but may 
also lower the barrier to entry to programming itself. Given that Codex and Co- 
pilot work by allowing humans to describe in natural language an effect they 
would like accomplished through code, the task of coding may become more ap-
proachable to many, many more people.

T his ability to train on one set of data and to transfer what is learned to a 
broad range of tasks is called transfer learning. Transfer learning, perhaps 
more than anything else over the next few years, is likely to accelerate our 

progress on AI. It allows us to think about models as reusable building blocks, 
what I call platform models, and researchers at Stanford are calling foundation  
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models.13 Moreover, based on the trends of the past few years, for transfer learning 
to work better, we will need bigger and more sophisticated models, which in turn 
will require more training compute.
AI systems designed to assist us with our cognitive work will no doubt con-

tinue to surprise us. I have been surprised so many times over the past two de-
cades by what AI scientists and researchers have been able to accomplish that  
I have learned to heed the second half of Arthur C. Clarke’s first law: When a dis-
tinguished but elderly scientist states that something is possible, they are almost 
certainly right. When they state that something is impossible, they are very prob-
ably wrong. Somewhere in the surprises of the future that await us, I am looking 
forward to systems that can help me to write my code, to sharpen my writing, to 
help me better manage the deluge of information I crave, and to assist me with the 
art and artifacts I make in my workshop. Hopefully, as our eighteenth- and nine-
teenth-century forebears did with physical work, we will also sharpen our defini-
tions of cognitive work, develop new mechanisms for measuring it, and get better 
at constructing AI building blocks and tools to help us with these tasks. But more 
than anything, I look forward to what happens when folks who are more imagi-
native and creative than I am are able to incorporate new AI-based cognitive tools 
into their work, to make things that awe and inspire, and to solve those vexing 
problems that face society as we race forward to an ever more complicated future.
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